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ANALYSIS OF THIRD-ORDER METHODS 
FOR SECULAR EQUATIONS 

A. MELMAN 

ABSTRACT. Third-order numerical methods are analyzed for secular equations. 
These equations arise in several matrix problems and numerical linear alge- 
bra applications. A closer look at an existing method shows that it can be 
considered as a classical method for an equivalent problem. This not only 
leads to other third-order methods, it also provides the means for a unifying 
convergence analysis of these methods and for their comparisons. Finally, we 
consider approximated versions of the aforementioned methods. 

1. INTRODUCTION 

Consider a real symmetric matrix A C Rn>< with known eigenvalues, to which 
a symmetric rank-one perturbation is added. The eigenvalues of the new matrix 
A + uzzT (z C Rn) are then given by the solutions of a so called secular equation 
(see [11]). This and similar problems appear in several applications in numerical 
linear algebra, such as the singular value decomposition of a matrix and eigenvalue 
problems, to name but a few. The following list is a small sample of the many 
related references: [1, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14]. The secular function g(s) 
we will consider is a real function of the form 

m v2 

(1) g(s)m=t+Vs+ 

where all parameters are real, 

di < d2 < < dm v 

2 j2 0 for all j and v > 0. This function has m simple poles and is monotonic 
increasing from -oo to +oo on the interval between two consecutive poles, which 
means that there is a root on each of those m - 1 intervals. The problem then 
consists of solving g(s) = 0 for each of its roots. This function belongs to a class of 
functions called Pick functions (see [7]). Depending on the values of [t and v, there 
may be one or two extra roots in addition to the m - 1 roots on the intervals. For 
[t > 0 and v = 0, there is one extra root to the right of dm. For v > 0, there are 
two extra roots: one to the left of d1 and one to the right of dm. 

Let us now consider the m - 1 roots on the intervals (dj, dj+l) (j = 1, ..., m-1). 

To compute the i-th root (1 < i < mr-), i is fixed and, as in [3], the transformation 
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of variables s = di + t is carried out, which, with &j = dj-di, yields the following 
root-finding problem on (0, 6i+1) 

m ;2 

(2) f(t)m= 
a+ t+E i t 

where 

61 < *-< 6i = ? < 6i+l < *-< 6m v 

a = ,u + vdi and v = . This transformation is not essential to our results. The 
basic problem then consists of solving f(t) = 0 on the interval (0, 6i+1). On this 
interval f is monotonic increasing and it has two singularities, one at t = 0 and one 
at t = 6i+?. It has exactly one real root on this interval. The two possible extra 
roots will not be treated separately as their computation is easier (the function is 
strictly convex or concave with only one singularity). 

In the aforementioned applications, secular equations typically have to be solved 
to high accuracy many times as a subproblem of a larger one, which requires fast 
and stable methods. An important instance is the the Divide and Conquer method 

([5]) 
There exist several second-order methods, i.e., methods based on approximations 

to f that agree up to its first derivative at a given point. These approximations are 
usually rational functions, which attempt to take into account the singularities of 
f (see [3, 16, 17, 18]). An approximation based on a polynomial (such as Newton's 
method) is inappropriate because of the singular nature of f. Of course, it is always 
possible to use standard root-finding methods with proper safeguards. However, 
safeguards together with the failure to take into account the singularity of the 
equation lead to wasteful computations. 

Third-order methods are less common. In fact only one method, Gragg's zero 
finder ([1, 131), seems to be practically used. We start off with this method and 
show that hiding behind it, is the classical Euler1 approximation (second-order 
Taylor polynomial) for a different function, but one having the same root. This 
interpretation leads to another third-order method, not less classical than Euler's, 
namely Halley's method, along with a modification of it. We prove their global con- 
vergence and present theoretical comparisons between them. Key to our analysis 
are a simplifying transformation of the problem and the geometry of the approx- 
imations that characterize the methods. Finally, we consider the aforementioned 
methods with finite difference approximations to the second derivative. 

Part of the motivation for studying these methods is provided by the extensive 
numerical results in [16] which show the potential of Gragg's zero finder. Our 
intention is to present a theoretical convergence analysis of third-order methods 
and we do not treat implementation issues, such as numerical comparisons, stopping 
rules and the influence of inexact arithmetic. 

We have used the term "approximation" where others might prefer "interpola- 
tion". An expression such as "approximation at x- up to first derivative" means 
that the approximant (or interpolant) agrees with the function it approximates 
(interpolates) and with its first derivative, at a certain point x. 

1We have used Euler's name, which seems to be common practice. However, there is some 
doubt as to whom the method should be ascribed to. Cauchy emerges as a very likely candidate. 
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In Section 2 we present Gragg's zero finder and show its equivalence to Euler's 
method. In Section 3 a transformation of variables is introduced, Halley's method 
is presented and some lemmas are given. The convergence of our methods, as 
well as comparisons between them, is dealt with in Section 4. In Section 5, we 
present a modification of Halley's method and Section 6 concerns finite difference 
approximations to the second derivative. 

2. GRAGG'S ZERO FINDER 

Let us have another look at Gragg's zero finder ([1, 13]). We recall that we are 
solving the equation f (t) = 0 on the interval (0, 6), where f (t) is given by (2) and 
where we have defined 6 = 6i+,. The method proposed in [1, 13] is an iterative 
method for the solution of this equation, based on a third-order approximation of 
the form 

(3) a + c + t 
t 6-t 

with a, b and c chosen such that it agrees with f, f' and f" at successive iterates, 
which are the roots of the successive approximations. This is a rational approxi- 
mation which takes into consideration the two singularities of the function that are 
closest to the root and it can therefore be expected to be more appropriate than 
one based, e.g., on a Taylor expansion. In other words, we have 

b c f() 
a + - + ^~ t f (t) t 6- t 

This is the same as saying that 

-at2 + (a6b-b + c)t + ?b t(6-t)f(t), 

where the approximating function is now quadratic. Since its coefficients are inde- 
pendent, this means that Gragg's zero finder can be interpreted as a method, based 
on the classical Euler approximation (Taylor expansion up to second-order terms) 
for a different function, but with the same root on the interval of interest. 

Unfortunately, the function t(6 - t)f(t) is neither convex nor concave, which 
renders it rather useless for our purposes. The reason for this lies in the geometric 
nature of the analysis. We will therefore carry out a transformation of variables, 
which leads to another, equivalent, problem with a strictly concave function. This 
is the subject of the next section. 

3. TRANSFORMATION OF VARIABLES AND HALLEY'S METHOD 

Consider the transformation of variables t = 1/y and denote F(-y) - f(/1-y). 
The problem is now to solve F(-y) = 0 on (1/6, +oo). The function F is monotonic 
decreasing from +oo to -oo and convex (see [17]). It therefore has a single root on 
the aforementioned interval, which we denote by *. Gragg's approximation in the 
new variable ay can be written as: 

pw+isqu+ t Ft 

which is equivalent to 
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We observe that the approximating function is quadratic with independent coeffi- 
cients, which means that we have once again obtained Euler's approximation, in 
this case for the function (-y- 1/6)F(-y). As we shall see in Lemma 3.1, this function 
is strictly concave. In what follows, we denote 

q($Q) = (--1/6)F(Q) . 

Its only root on the interval [1/6, +oo) is the root -y* of F(-y). 
Using different approximations leads to different methods. One such method, 

not less classical than Euler's, is Halley's method, which is based on a rational 
approximation. This method dates back more than 300 years. In the words of J.F. 
Traub ([23]), Halley's iteration function (I.F.) "must share with the secant I.F. the 
distinction of being the most frequently rediscovered I.F. in the literature". For a 
historical background to these methods, the reader is referred to [22] and references 
therein. In this case, the approximation to a function G(-y) at some point , if 
G"(a) 7 0, takes the form 

b 
a + 

^a + c 

where a, b and c (not the same as before) are again determined by the third-order 
approximation conditions. When G"(a) = 0, the approximation degenerates into a 
line. In fact, the standard way the approximation is presented (see [20, 21, 23]) is 

-y + a 
G() 

b-y + c 

i.e., as a linear fractional (or M6bius) transformation. Here we prefer to use the 
previous form, which is equivalent to the standard form for G"(-) ; 0, as it is more 
convenient for our purposes. 

In what follows, we will examine Euler's and Halley's methods for the problem 
(-Y) = 0. 

We will need the following lemmas. 

Lemma 3.1. On the interval [1/6, +oo), the higher order derivatives (n > 2) of b 
satisfy 

sgn (?>(n)) - (_1)n+l 

Proof. After some algebra we obtain 

F(-y) =aor + ( 

joi joi 

,g ( ) 

p ==1Y 
fr/i fr/ 

and for n > 2 

Fn () 
2 
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From Leibniz's rule, we have 

q$(n (,) - F(n) (_y) + nF(n-) -y) 

For n > 2 we therefore obtain 

?>(n) n!, (I 5 1 +(_I)nn! ? (j -6 1 

Recalling that -y > l/1j for all j, one has 

_ 1 ~1 - -1 1 

(4) -1- 5i 
(5 

< 0 and I-6 = < O- . 1 - 

Therefore, the sign of q$(n) is given by -(-I)n. D] 

Lemma 3.2. The function 

n 

h(t) = E aj(tv+ j)P, 
j=1 

with p a nonzero integer and the aj 's nonnegative, satisfies 

P h'2(t) + h(t)h" (t) 
? 0, 

p 

for all t such that t + minj 3{j } > 0. 

Proof. Let us first compute h' and h": 

n n 

hl'(t) = pEaj (t+ Oj)P-' h" (t) =p(p-1) j (t + oj)p-2- 

j=1 j=l 

We then have 

Plh 2(t) p(p-1) ( (t+ 3j) 

We note that p (p -1) and p(p -1) are nonnegative when p is a nonzero integer. 
Applying the Cauchy-Schwarz inequality yields 

This completes thenproo 

P h'2 (t) < p(p - 1) Va-j (t + 13j )/a- ) (t + )3j) -12=h(h"t 

Appisnomlee the CauhySchar inqaiyyed 
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FiGURE 1. The functions f (t), F(-y) and q(y). 

As an example, Figure 1 shows the functions f(t), F(a-) and q(y), with 

1 3 0.25 6 8 
f (t) = -8.5 +t+ 1 + -+ + -+ 

F(-y)=f -=1-3f+(+> 3 + + - ? O+ . 

2 ~~2 3 6 3 
0(-y) =(-y -2)F(-y) = -3a2 + 7-y + 9 - 

4. CONVERGENCE 

We now turn to the convergence analysis of the two methods previously men- 
tioned. The following theorem compares Newton's, Euler's and Halley's approxi- 
mations to ($-y). We denote these approximations, respectively, by N(y), E(-y) and 
H(Qy). 

Theorem 4.1. At a point a' for which q'(ty) < 0, the approximations N(Y), E(-y) 
and H(-y) satisfy the following inequalities for 1/6 < -y < y 

(5) <{y) ? E(y) < HQy) < N(ty) 

For y > -y they satisfy 

(6) N(i) > q (7) > E(y) > H(y) . 
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Proof. For Eulers's approximation at the point , we have 

py2 + q r -y([) 

which yields the following equations for the parameters p, q and r 

(7) PI-2+ q5Q5+r (7) ~~~~pa +q+~-r = () 

(8) 2pa [-q = q'Q5) 

(9) 2p= q"(a) 

In other words, q' is approximated up to first derivative at the point a by the line 
2py + q. From the previous lemma, we know that 0"' is positive on [1/6, +oo). 
Therefore, on this interval, q' is convex, which implies that 2p-y + q < '(y). This 
means that for ay > 

X(2pt +q) dt < / (t) dt, 

which yields 
2 2 < pl-y + q,-py -p q,;y q5y)5() 

Adding and subtracting r in the LHS and using (7) gives 

(10) p72+ q-y+-r < (-y) 

for y > . The inverse inequalities are obtained for 1/6 < y < . 
On the other hand, since 0" 0 on [1/6, +oo), Halley's approximation at a point 

a takes the form 

b 
a + + ~ -1(a 

This yields the following equations for the parameters a, b and c 

(11) a+ + = 

-b 
(12) ( /+c)2 = 

(13) (7 +c) = 

In other words, q'(-y) is approximated up to first derivative at the point a by the 
rational function -b(-y+c)-2. Since 'Q-y) < 0, b must be positive. This means that 

(_(-y))-I/2 is approximated up to first derivative by the line -(1/ V')Q(-y+c). Let 
us now have a look at ((-qf)-1/2)ff 

(14) ((-X)/ 2) = (2(-X$)- 2 ) 3-(-%)-$2 + _j- 2/I" 

Since 0"' is positive, we have obtained that (_f>)-1/2 is a convex function. There- 
fore 

(15) 0 < -(i/V/b)(_ + c) < ( -II(.))-l/2 

We are only interested in points where the line is strictly positive, as it has to 
be positive at oy and its zero is a singularity for the original approximation to q'. 
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Once this inequality established, we immediately obtain that -b(y + c)-2 < Y(y). 
Proceeding as before, we now have for ay > y: 

J (t-c)2 dt< J 0'(t) dt, 

which yields 

b b 
K 

y+c '+ c - 

Adding and subtracting a in the LHS and using the first approximation condition 
gives 

b 
a + +C< (-Y)- 

The opposite inequality is obtained for 1/6 < K . We now compare the different 
approximations: N('y), E(-y) and H(y). Since E(a-) and H(y) both approximate 
q('y) up to first order at ;', we have 

P,Y2 bq-ra j q(' 
+ q2 + r 2-a +b a~' + c 

2p,;y- + q = - ) n) 

2p=( + Wa 
(Y 

The meaning of this is that -b(y + c)-2 is approximated up to first derivative by 
the line 2p-y + q. However, since b > 0, -b(-y + C)-2 is a concave function and 
therefore 2p-y + q > -bQ(y + c)-2. For ay > we obtain 

J(2pt+q)dt > ? dt, 

which yields 

2 -2 b b py + qy-c -7 y+c 

Adding and subtracting r in the LHS and a in the RHS and using (11) yields 
E(-y) > H(y). The opposite inequality holds for 1/6 < Ky <K. Since both E(-y) 
and H(-y) are concave and since Newton's approximation is simply the tangent line 
to 0(y) (and therefore to E(y) and H(y) as well), we obtain that N(Q) > E(-y) 
and N(y) > H(y). Because of the concavity of 0, N(-y) > q(-y) on the entire 
interval. a 

Here, Newton's method, when starting from a point a such that 0(`y) < 0, yields 
a better approximation to the root the closer the starting point lies to that root. 
The reason for this is the concavity of Q. 

Because of the inequalities in the previous theorem, we know that those methods 
converge at least as fast as Newton's method for the same problem with a starting 
point ;y such that q(;y) < 0. The convergence of Newton's method is immediate 
in this case (see, e.g., [15, 19, 23]). This means that Euler's and Halley's methods 
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FIGURE 2. Comparison between Euler's, Halley's and Newton's approximations. 

also converge and their cubic order of convergence folllows from, e.g., [23]. We also 
note that the inequalities imply that, for our problem, the step in Euler's method 
is larger than for Halley's. All this is summarized in the following theorem. 

Theorem 4.2. Euler's and Halley's methods converge from any point a for which 
0(a) < 0 with cubic order of convergence. At each iteration, the Euler step is larger 
than Halley's. OI 

Euler's method also converges from points where >' > 0, as in this case the 
proof of the inequalities does not depend on the sign of O'. Newton's or Halley's 
method do not converge from such a point. Figure 2 compares Euler's, Halley's 
and Newton's approximations for the example in Section 3 at the point a 4. The 
roots of the different approximations are denoted by "r(.)". 

The convergence of Euler's method for this particular case, or Gragg's zero finder, 
was also proven in [1]. Our proof was presented from a more general viewpoint, 
with the additional advantage of avoiding the relatively messy computation of the 
coefficients in the approximation. 

A shorter way for proving the convergence of Halley's method in this case is 
provided by its equivalence to Newton's method (see [2]), applied to an equivalent 
problem which in our case is given by (=$)/(q$f)l/2 0. Convergence will be 
monotonic from the right for any starting point to the right of the root of 0. The 
reason for this is the fact that (Ay)/(Ayf)l/2 is an increasing convex function to 
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the right of the root of 0. This easily follows from (14) and from 

+ 

- (( ?) ( ( ?)/)-1/2 )I ? ( ( f) 1/2 )) 

=(_(f)((_Qf)-1/2)f + ( ?) (( _$/)-1/2)ff - 1 _>-12b 
2 

- (_?)((_?f)-1/2)ff 

The convergence is then immediate from a classical result for Newton's method 
(see, e.g., [15, 19, 231). 

However, unlike the aforementioned equivalence approach, our techniques allow 
us to consider modifications in which only part of a function is approximated, which 
is precisely what we are about to do. 

5. MODIFICATION OF HALLEY'METHOD 

We recall that 1Qy) = -1/6)F(-y). From Lemma 3.1 we have 

m 2? m (i 

F(y)=a E6j --(2y + d + E j 

j#i j#i 

Multiplying this expression by -y-1/6 and using (4), one obtains +Qy) 
where Q(Qy) is a quadratic function and g6(by) is of the form 

(16) 0(b) q- 

where for all i : qi, ri C ER and ri < 1/6. Therefore, (y) < 0 on [1/6, +oo). Instead 
of approximating q by either Eulers's or Halley's approximation, we could simply 
leave Q(y) as it is and approximate only b. Of course, this makes a difference only 
for Halley's method, as Euler's approximation is already quadratic. As we will see 
in the following theorem, this simple modification rehabilitates Halley's method by 
making it convergent on the whole interval [1/6, +oo) and, in addition, superior to 
Euler's method. 

We denote by HA Halley's approximation to b when there can be no misunder- 
standing about the point at which the approximation is carried out. 

Theorem 5.1. The method obtained by approximating 0(y) by Q(Qy) + Hp(py) is 
globally convergent on the interval [1/6, +oo) and, at each iteration, its step is at 
least as large as the step in Euler's method. 

Proof. Again we use the geometric interpretation of Halley's method, similarly to 
the proof of Theorem 4.1. The same conditions (11)-(13) hold with q replaced by 
/. On [1/6, +oo), b satisfies: / > 0, p" < 0 and /"' > 0. In addition, one obtains 

from Lemma 3.2, that 

( )t= 0 5 (23 , i2 
-_ O < 0. 

A similar computation also appears in [24]. This means that /6' 1/2 iS a concave 
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FIGURE 3. One iteration of the modified Halley method for < 

FIGURE 4. One iteration of the modified Halley method for a > * 

function. Proceeding analogously as in the proof of Theorem 4.1, we find that the 
same inequalities that were derived for 0 also hold for +b. The difference is that 
whereas those inequalities hold for 0 only at points where q' < 0, for f/ they hold at 
any point in the interval [1/6, +oo). For > ? a this yields: +(a) < Q(y) + Hp(Qy), 
whereas for 1/6 < -y < , the opposite inequality is obtained. This means that for 
a > 'y* (where Q < 0) the approximation is concave and lies above 0 for points 
between a and the root, while for a < * (where > 0), it is also concave but lies 
below it for points between a and the root. This is illustrated in Figures 3 and 4, 
where one iteration of the method is shown for each case. 
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Therefore, convergence will be monotonic from either side of the root. We obtain 
a monotonic increasing or decreasing bounded sequence, depending on the side 
from which the process converges. Those sequences inust therefore converge to 
an accumulation point (, at which 0 must be zero. To prove this, suppose that 
0(() :4 0 and that convergence is from the left. Then, since 0" :4 0 and q$'1 < +00, 

the approximation can never be a vertical line and therefore one can always find 
rqo < ( with its next iterate ml such that ml > (, contradicting the fact that ( is an 
accumulation point for a monotonically converging sequence. 

It remains to be shown that this modification is better than Euler's approxima- 
tion. Since py2 + q-y + r approximates 0, it also approximates Q(y) + H+p(-y) up to 
second derivatives. Therefore, py2 + q-y + r - Q(y) must approximate Hp(y). For 
any 

- 
e [1/6, +oo), we obtain 

pIa- + q- +r r-Q(-) =Ho(-) =() 
2p- + q-Q') - H a) -) 

2p - Q Hl(() =HI(-) = lla 

However, from the conditions on ~b, we have that HI is convex, implying 2p-y + q - 

Q'(-y) < H(-y). Arguments analogous to those in the proof of Theorem 4.1 then 
lead to E(y) < Q(y) + Hip for -y > and the iniverse inequality for 1/6 < -y < . 
Therefore Euler's method yields a smaller step in both cases. 

In order to use a particular approximation for a function in an iterative method, 
it should be easy to compute its root, as this will be the next iterate. For Euler's 
and Halley's approximations, this means solving, respectively, a quadratic and a 
linear equation. For the modification of Halley's method however, we need to solve 
a cubic equation. Even though this is still possible analytically, it is preferable 
to use Newton's method. The approximation is concave, and Newton's method 
will converge from any point to the right of its root. In a typical application, 
the number of operations needed to carry this out is negligable compared to the 
number of operations involved in the computation of one function value of the 
original function f. 

An iterative method also needs a starting point. We first note that, as a starting 
point, -yo = 1/6 is a perfectly good choice for Euler's method and the modified 
Halley method. We can obtain other starting points by considering (16), which 
leads to the following inequalities: 

Q(Y)+f(- 'o Q Q(Y)+'o(bY) < Q(-Y) 

Possible starting points are then provided by the roots of the quadratics that bound 
q. 

6. SECOND DERIVATIVE APPROXIMATIONS 

To reduce the number of arithmetic operations per iteration, one can replace 
the second derivative by a suitable finite difference approximation. However, this 
approximation should be carried out so as to maintain convergence. The appropri- 
ate finite difference approximation turns out to be different for different methods. 
Of course, cubic convergence is lost, but the resulting algorithm will be at least of 
second order. The methods thus obtained could be called quasi-Euler and quasi- 
Halley. 
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We recall that, generally speaking, the convergence of our methods derives from 
inequalities such as (5), (6) and similar ones in the proof of Theorem 5.1. These 
inequalities, in turn, are based on the convexity of certain functions and these 
functions are the key to the correct finite difference approximation. This forms the 
subject of the following theorem. 

Theorem 6.1. The following finite difference approximations of the second deriv- 
ative, based on the derivatives at Y, and 72, maintain monotonic convergence for 
the resulting methods. For Euler's method: 

(17) "(-Y2) 0'(Y2) - 0'(yi) 
Y72 - Yi 

For Halley's method: 

(18) 0 (72)Y2((-0t(72))3) ( 0(72))Y2 - 71i 

For the modified Halley method 

(19) fb"Q2) ( -2 ((372)3) (b'72)>I -(71 

Proof. The proof relies heavily on the proofs of Theorem 4.1 and Theorem 5.1. In 
the proof of Theorem 4.1 we saw that inequality (10), which is responsible for the 
monotonic convergence of Euler's method, was based on the convexity of qY. This 
convexity caused a linear approximation to q' to lie below qY, but it also causes any 
secant approximation to 0q, based on two points -yi and 2, to lie below q' for points 
outside the interval determined by -Y, and %2. Since this is precisely what we need, 
the finite difference approximation of the second derivative for Euler's method is 
given by (17). 

For Halley's method, the function (-/i/>2 plays the role, which is played by /' 

for Euler's method. Since 

(( 1) ( -+/ 32 / 

we obtain (18) immediately. The finite difference approximation in (19) is obtained 
analogously. D 

As we mentioned, the approximated methods, while still being at least of second 
order, are no longer of third order. For Euler's and Halley's methods, e.g., it can 
be proven that the order becomes 1 + v'2. The proofs are rather technical and we 
shall not consider them here. They are similar to results of the same type in [23]. 

Figures 5 and 6 compare the different methods for the example in Section 3. 
We have denoted the modified Halley method by "MH" and have distinguished the 
methods obtained by finite difference approximations to the second derivative by 
placing the letter "A" in front of their abbreviations. The approximations were 
carried out at the point ty 4. The second point used in the approximation of the 
second derivative is ty-8. The potential of the approximated, or quasi-, modified 
Halley method, is clear from this example as it produces better results than the 
exact Euler method. 

There are many possible combinations of methods, such as Newton-Secant, which 
leads to a third-order method if both steps are taken together, etc. (see [23]). The 
special form of our problem, obtained by transforming both the variable, t = 1/y, 
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and the function, 0(qy) = (y - 1/6)F(-y), makes the convergence analysis of such 
methods relatively easy. If we take the Newton-Secant method as an example, 
then monotonic convergence from the right of the root is immediate because of the 
concavity of 0. We stress that without these transformations, the analysis of these 
methods would be much more complicated. 

Other possible modifications include leaving more terms of b in the approxima- 
tion. This does not affect the monotonicity of the convergence. 
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